Range
Therange is defined to be the highest value minus the lowest value. The symbol R is used for the range.
rangedidefinisikan sebagai nilai tertinggi dikurangi nilai terendah. SimbolRdigunakan untuk range.
R = highest value – lowest value.
Nilai data yang sangat besar atau sangat kecil dapat mempengaruhi range secara drastis.
Population Variance
The variance is the average of the squares of the distance each value is from the mean.
The symbol for the population variance is ( is the Greek lowercase letter sigma)
, where
The symbol for the population variance is ( is the Greek lowercase letter sigma)
, where
- = is individual value
- = is population mean
- = is population size
Example
Consider the following data to constitute the population: 10, 60, 50, 30, 40, 20.
Find the mean and variance.
The
The
Table
Find the mean and variance.
The
mean = (10 + 60 + 50 + 30 + 40 + 20)/6 = 210/6 = 35.The
variance = 291.67.Table
| 10 | -25 | 625 |
| 60 | 25 | 625 |
| 50 | 15 | 225 |
| 30 | -5 | 25 |
| 40 | 5 | 25 |
| 20 | -15 | 225 |
210 | 1750 |
Population Standard Deviation
The standard deviation, denoted by , The standard deviation is the square root of the variance.
Sample Variance
The unbiased estimator of the population variance or the sample variance is a statistic whose value approximates the expected value of a population variance.
It is denoted by , where
, and
It is denoted by , where
, and
- = sample mean
- = sample size
Example
Find the variance and standard deviation for the following sample: 16, 19, 15, 15, 14.
= (16 + 19 + 15 + 15 + 14) = 79
= (16^2 + 19^2 + 15^2 + 15^2 + 14^2) = 1263
= (16 + 19 + 15 + 15 + 14) = 79
= (16^2 + 19^2 + 15^2 + 15^2 + 14^2) = 1263
Sample Standard Deviation
The sample standard deviation is the square root of the sample variance.
Shortcut Formula for the Sample Variance and the Standard Deviation
, or
Shortcut Formula for the Sample Variance and the Standard Deviation
, or
Sample Variance for Grouped and Ungrouped Data
Forgrouped data, use the class midpoints for the observed value in the different classes.
For ungrouped data, use the same formula with the class midpoints, , replaced with the actual observed X value.
The sample variance for
grouped data:For
ungrouped data, replace with the observe value.Sample Variance for Grouped Data - Example
| 5 | 2 | 10 | 50 |
| 6 | 3 | 18 | 108 |
| 7 | 8 | 56 | 392 |
| 8 | 1 | 8 | 64 |
| 9 | 6 | 54 | 486 |
| 10 | 4 | 40 | 400 |
Sample Variance for Ungrouped Data - Example
The sample variance and standard deviation:
Coefficient of Variation
Thecoefficient of variation is defined to be the standard deviation divided by the mean. The result is expressed as a percentage.
Koefisien variasi didefinisikan sebagai standar deviasi dibagi dengan rata-rata. Hasilnya dinyatakan dalam persentase.
or
Chebyshev’s Theorem
The proportion of values from a data set that will fall within k standard deviations of the mean will be at least , where k is any number greater than 1.Proporsi nilai dari kumpulan data yang akan jatuh dalam k standar deviasi dari rata-rata setidaknya , di mana k adalah angka lebih besar dari 1.For k = 2, 75% of the values will lie within 2 standard deviations of the mean. For k = 3, approximately 89% will lie within 3 standard deviations.
Untuk k = 2, 75% nilai akan berada dalam 2 standar deviasi dari rata-rata. Untuk k = 3, sekitar 89% akan berada dalam 3 standar deviasi.
The Empirical (Normal) Rule
For any bell shaped distribution:Untuk distribusi berbentuk lonceng:
-
Approximately 68% of the data values will fall within one standard deviation of the mean.
Sekitar 68% nilai data akan berada dalam satu standar deviasi dari rata-rata.
-
Approximately 95% will fall within two standard deviations of the mean.
Sekitar 95% akan berada dalam dua standar deviasi dari rata-rata.
-
Approximately 99.7% will fall within three standard deviations of the mean.
Sekitar 99.7% akan berada dalam tiga standar deviasi dari rata-rata.
