statistic is a characteristic or measure obtained by using the data values from a sample.
statistika adalah karakteristik atau ukuran yang diperoleh dengan menggunakan nilai data dari sampel.
A parameter is a characteristic or measure obtained by using the data values from a specific population.
parameter adalah karakteristik atau ukuran yang diperoleh dengan menggunakan nilai data dari populasi tertentu.
The Mean (arithmetic average)
The mean is defined to be the sum of the data values divided by the total number of values.Mean = Sum of data values / Total number of valuesWe will compute two means: one for the sample and one for a finite population of values.
Kita akan menghitung dua mean: satu untuk sampel dan satu untuk populasi nilai yang terbatas.The mean, in most cases, is not an actual data value.
Mean, dalam kebanyakan kasus, bukan merupakan nilai data yang sebenarnya.
Sample Mean
The symbol represents the sample mean. is read as “X - bar”.
The Greek symbol is read as “sigma” and it means “to sum”
The Greek symbol is read as “sigma” and it means “to sum”
Sample Mean - Example
The ages in weeks of a random sample of six kittens at an animal shelter are 3, 8, 5, 12, 14, and 12. Find the average age of this sample.
The sample mean is
weeks.
The sample mean is
weeks.
The Population Mean
The Greek symbol represents the population mean. The symbol is read as “mu”.
is the size of the finite population.
is the size of the finite population.
Population Mean - Example
A small company consists of the owner the manager, the salesperson and two technicians. The salaries are listed as $50,000, 20,000, 12,000, 9,000 and 9,000 respectively (Assume this is the population)
Then the population mean will be.
Then the population mean will be.
The Sample Mean for an Ungrouped Frequency Distribution
The mean for an ungrouped frequency distributuion is given by
Here is the frequency for the corresponding value of and
Here is the frequency for the corresponding value of and
Sample Mean for an Ungrouped Frequency Distribution - Example
The scores for students on a 4 - point quiz are given in the table.
Find the mean score.
Find the mean score.
| Score () | Frequency () | |
|---|---|---|
| 0 | 2 | 0 |
| 1 | 4 | 4 |
| 2 | 12 | 24 |
| 3 | 4 | 12 |
| 4 | 3 | 12 |
The Sample Mean for a Grouped Frequency Distribution
The mean for a grouped frequency distributuion is given by
Here is the corresponding class midpoint.
Here is the corresponding class midpoint.
Sample Mean for a Grouped Frequency Distribution - Example
Given the table below, find the mean.
and So
| Class | Frequency () | Class Midpoint () | |
|---|---|---|---|
| 15.5 - 20.5 | 3 | 18 | 54 |
| 20.5 - 25.5 | 5 | 23 | 115 |
| 25.5 - 30.5 | 4 | 28 | 112 |
| 30.5 - 35.5 | 3 | 33 | 99 |
| 35.5 - 40.5 | 2 | 38 | 76 |
and So
The Median
When a data set is ordered, it is called adata array.
Ketika kumpulan data diurutkan, disebut sebagai data array.
The median is defined to be the midpoint of the data array
median didefinisikan sebagai titik tengah dari data array
The symbol used to denote the median is MD.
Simbol yang digunakan untuk menunjukkan median adalah MD.
The Median - Example odd number
- The weights (in pounds) of seven army recruits are 180, 201, 220, 191, 219, 209, and 186. Find the median.
- Arrange the data in order and compute the middle point:
- Data array: 180, 186, 191,
201, 209, 219, 220. - The median, MD = 201.
The Median - Example even number
When there is aneven number of values in the data set, the median is obtained by taking the average of the two middle numbers.
Ketika ada jumlahnilai genapdalam kumpulan data, median diperoleh dengan mengambilrata-rata dari dua angka tengah.
- Six customers purchased the following number of magazines: 1, 7, 3, 2, 3, 4. Find the median.
- Arrange the data in order and compute the middle point:
- Data array: 1, 2,
3, 3, 4, 7. - The median, MD = (3 + 3)/2 = 3.
- The ages of 10 college students are: 18, 24, 20, 35, 19, 23, 26, 23, 19, 20. Find the median.
- Arrange the data in order and compute the middle point:
- Data array: 18, 19, 19, 20,
20, 23, 23, 24, 26, 35. - The median, MD = (20 + 23)/2 = 21.5.
The Median for an Ungrouped Frequency Distribution
For an ungrouped frequency distribution, find the median by examining the cumulative frequencies to locate the middle value.Untuk distribusi frekuensi yang tidak dikelompokkan, temukan median dengan memeriksa frekuensi kumulatif untuk menemukan nilai tengah.If n is the sample size, compute n/2. Locate the data point where n/2 values fall below and n/2 values fall above.
Jika n adalah ukuran sampel, hitung n/2. Temukan titik data di mana n/2 nilai berada di bawah dan n/2 nilai berada di atas.
The Median for an Ungrouped Frequency Distribution - Example
- LRJ Appliance recorded the number of VCRs sold per week over a one-year period. The data is given below. Find the median.
No. Sets Sold Frequency Cumulative Frequency 1 4 4 29 133 6 19 4 2 21 5 3 24
- To locate the middle point, divide n by 2: 24/2 = 12.
- Locate the point where 12 values would fall below and 12 values will fall above.
- Consider the cumulative distribution.
- The and values fall in class 2.
- The median, MD = 2.

The Median for a Grouped Frequency Distribution
The median can be computed from:
Where:
Where:
- sum of the frequencies
- cumulative frequency of the class before the median class
- frequency of the median class
- width of the median class
- lower boundary of the median class
The Median for a Grouped Frequency Distribution - Example
Given the table below, find the median.
| Class | Frequency () | Cumulative Frequency () |
|---|---|---|
| 15.5 - 20.5 | 3 | 3 |
| 20.5 - 25.5 | 5 | 8 |
25.5 - 30.5 | 4 | 12 |
| 30.5 - 35.5 | 3 | 15 |
| 35.5 - 40.5 | 2 | 17 |
- To locate the halfway point, divide n by 2: 17/2 = 8.5 9.
- Find the class that contains the value. This will be the
median class. - Consider the cumulative distribution.
- The median class will then be 25.5 - 30.5.
The Mode (Modus)
The mode is defined to be the value that occurs most often in a data set.Modus didefinisikan sebagai nilai yang paling sering muncul dalam kumpulan data.A data set can have more than one mode.
Sebuah kumpulan data dapat memiliki lebih dari satu modus.A data set is said to have no mode if all values occur with equal frequency.
Sebuah kumpulan data dapat dikatakan tidak memiliki modus jika semua nilai muncul dengan frekuensi yang sama.
The Mode - Example Exist Mode
The following data represent the duration (in days) of U.S. space shuttle voyages for the years 1992-94. Find the mode.
Data set: 8, 9, 9, 14, 8, 8, 10, 7, 6, 9, 7, 8, 10, 14, 11, 8, 14, 11.
Ordered set: 6, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 14, 14, 14. (Mode = 8).The Mode - Example No Mode
Six strains of bacteria were tested to see how long they could remain alive outside their normal environment. The time, in minutes, is given below. Find the mode.
Data set: 2, 3, 5, 7, 8, 10.
There is no mode since each data value occurs equally with a frequency of one.The Mode - Example Double/Two Mode
Eleven different automobiles were tested at a speed of 15 mph for stopping distances. The distance, in feet, is given below. Find the mode.
There are
Why?
Data set: 15, 18, 18, 18, 20, 22, 24, 24, 24, 26, 26.There are
two modes (bimodal). The values are 18 and 24.Why?
The Mode for an Ungrouped Frequency Distribution - Example
Given the table below, find themode.
| Values | Frequency () | |
|---|---|---|
| 15 | 3 | |
| 20 | 5 | |
| Mode | 25 | 8 |
| 30 | 3 | |
| 35 | 2 |
The Mode for a Grouped Frequency Distribution - Example
The mode for grouped data is the modal class.Modus untuk data yang dikelompokkan adalah kelas modal.The modal class is the class with the largest frequency.
Kelas modal adalah kelas dengan frekuensi terbesar.Sometimes the midpoint of the class is used rather than the boundaries.
Kadang-kadang titik tengah kelas digunakan daripada batasnya.
Given the table below, find themode.
| Class | Frequency () | |
|---|---|---|
| 15.5 - 20.5 | 3 | |
| 15.5 - 20.5 | 5 | |
| Modal Class | 15.5 - 20.5 | 7 |
| 30.5 - 35.5 | 3 | |
| 30.5 - 35.5 | 2 |
The Midrange
Themidrange is found by adding the lowest and highest values in the data set and dividing by 2.
Midrange ditemukan dengan menambahkan nilai terendah dan tertinggi dalam kumpulan data dan membaginya dengan 2.
The midrange is a rough estimate of the middle value of the data.
Midrange adalah perkiraan kasar dari nilai tengah data.The symbol that is used to represent the midrange is
MR.
Simbol yang digunakan untuk mewakili midrange adalah MR.
The Midrange - Example
Last winter, the city of Brownsville, Minnesota, reported the following number of water-line breaks per month.The data is as follows: 2, 3, 6, 8, 4, 1.Find the midrange :
MR = (1 + 8)/2 = 4.5.Note: Extreme values influence the midrange and thus may not be a typical
description of the middle.
The Weighted Mean
Theweighted mean is used when the values in a data set are not all equally represented.
Mean tertimbang digunakan ketika nilai dalam kumpulan data tidak semuanya diwakili dengan sama.The
weighted mean of a variable X is found by multiplying each value by its corresponding weight and dividing the sum of the products by the sum of the weights.
Mean tertimbang dari variabel X ditemukan dengan mengalikan setiap nilai dengan bobotnya yang sesuai dan membagi jumlah produk dengan jumlah bobot.
The weighted mean
where are the weights and are the values.
where are the weights and are the values.
Distribution Shapes
Frequency distributions can assume many shapes.Distribusi frekuensi dapat mengasumsikan banyak bentuk.
The three most important shapes:
positively skewed
symmetrical
negatively skewed.
